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Alzheimer’s Disease-Related Genes
Identified by Linking Spatial Patterns
of Pathology and Gene Expression
Roger Mullins* and Dimitrios Kapogiannis*

Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD, United States

Background: Alzheimer’s Disease (AD) is an age-related neurodegenerative disease
with a poorly understood etiology, shown to be partly genetic. Glucose hypometabolism,
extracellular Amyloid-beta (Aβ) deposition, and intracellular Tau deposition are cardinal
features of AD and display characteristic spatial patterns in the brain. We hypothesize
that regional differences in underlying gene expression confer either resistance or
susceptibility to AD pathogenic processes and are associated with these spatial
patterns. Data-driven methods for the identification of genes involved in AD
pathogenesis complement hypothesis-driven approaches that reflect current theories
about the disease. Here we present a data driven method for the identification of
genes involved in AD pathogenesis based on comparing spatial patterns of normal gene
expression to Positron Emission Tomography (PET) images of glucose hypometabolism,
Aβ deposition, and Tau deposition.

Methods: We performed correlations between the cerebral cortex microarray samples
from the six cognitively normal (CN) post-mortem Allen Human Brain Atlas (AHBA)
specimens and PET FDG-18, AV-45, and AV-1451 tracer images from AD and CN
participants in the Alzheimer’s Disease and Neuroimaging Initiative (ADNI) database.
Correlation coefficients for each gene by each ADNI subject were then entered into a
partial least squares discriminant analysis (PLS-DA) to determine sets that best classified
the AD and CN groups. Pathway analysis via BioPlanet 2019 was then used to infer the
function of implicated genes.

Results: We identified distinct sets of genes strongly associated with each PET
modality. Pathway analyses implicated novel genes involved in mitochondrial function,
and Notch signaling, as well as genes previously associated with AD.

Conclusion: Using an unbiased approach, we derived sets of genes with expression
patterns spatially associated with FDG hypometabolism, Aβ deposition, and Tau
deposition in AD. This methodology may complement population-based approaches
for identifying the genetic underpinnings of AD.
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INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative
disease that accounts for 60–70% of dementia cases in the aging
population. The pathophysiology of the disease includes glucose
hypometabolism, whereas its cardinal neuropathological features
are the accumulation of aggregates of amyloid beta-peptide (Aβ)
in extracellular plaques and intracellular hyperphosphorylated
tau tangles. Pathologic forms of these proteins and their
aggregates impair synaptic function and induce maladaptive
neuroinflammation involving astrocytes and microglia. This
process eventually results in synaptic and neuronal loss,
macroscopically evident as brain atrophy (De Strooper and
Karran, 2016; Frisoni et al., 2022). Although the proximate causes
for Aβ and Tau aggregation have been largely crystalized in
the “amyloid hypothesis,” the ultimate causes of AD remain
unknown (Frisoni et al., 2022). Specific brain regions, such
as the medial temporal, precuneus/posterior cingulate, lateral
temporoparietal cortices, are more prone to develop severe AD
pathologies and manifest them earlier during the disease. By
contrast, other regions such as the primary motor cortex, sensory
cortex and cerebellum remain almost intact (Frisoni et al.,
2022). Attempts to explain this selective regional vulnerability
have focused on the structural and functional connectivity of
the default mode network (Buckner et al., 2009; Seeley et al.,
2009) and the spatial interplay of distinct processes leading to
glucose hypometabolism, Aβ plaques, and Tau deposition within
networks (Sepulcre et al., 2016).

The pathogenic cascade of AD extends over decades and
follows a characteristic regional progression, starting in distinct
brain regions for Aβ and Tau (Arnold et al., 1991; Braak and
Braak, 1991; Braak and Del Tredici, 2012; Sepulcre et al., 2016).
AD pathology is preceded or accompanied by changes in the
expression of many genes. The brains of late-stage AD patients
exhibit severe neuronal loss, which could result in an altered
gene expression profile. The underlying spatial patterns of gene
expression have been shown to account for both structural (Burt
et al., 2018; Reardon et al., 2018) and functional (Richiardi et al.,
2015; Vertes et al., 2016) features in the human brain, and
similar methods have been used successfully to examine genes
implicated in disease states such as Parkinson’s (Keo et al., 2021)
and Huntington’s disease (McColgan et al., 2018).

Given that the distribution of most gene expression varies
widely throughout the brain, we previously hypothesized that
regional differences in normal gene expression during young to
middle age may relate to or mediate regional vulnerability to
Aβ and Tau pathologies (Diehl et al., 2017; Mullins et al., 2017).
In prior studies, we focused on limited sets of genes associated
with insulin resistance, and revealed compelling associations
between the Brodmann area topography of normal expression
of metabolism and insulin signaling-related genes, and those of
established (Arnold et al., 1991) pathological Aβ and Tau.

In the present study we expand this hypothesis to investigate
whether normal regional cortical differences in gene expression
are related to the cardinal pathological features of AD, and to use
this information to identify specific genes and pathways related

to AD pathology. Given the striking and well-characterized
regional differences in glucose hypometabolism, Aβ and Tau, we
focused on these intermediate disease phenotypes. To establish
reliable image maps of these pathologies, we used FDG-18
(glucose metabolism), AV-45 (Aβ), and AV-1451 (Tau) PET
scans from the large ADNI cohort of AD and CN subjects.
Next, we examined the spatial correlation of these maps with
co-registered maps of gene expression from the Allen Human
Brain Atlas (AHBA)(Hawrylycz et al., 2012). We then used
the resulting correlation coefficients, one for each gene per
subject, as inputs to a Partial Least Squares Discriminant
Analysis (PLS-DA). Underlying this approach is PLS regression
(PLS-R) (Wold et al., 2001), a flexible Principal Components
Analysis-based method often used to assess commonalities
between AHBA transcriptome data and 3D imaging data from
other modalities. Specifically, PLS-R has been used to find the
spatial correlation between AHBA gene expression and resting-
state functional connectivity in healthy subjects (Vertes et al.,
2016; Zhu et al., 2021), and with regional cortical thickness
changes in Parkinson’s (Keo et al., 2021) and Huntington’s
disease (McColgan et al., 2018). An assumption of PLS-R is
that the system under investigation is primarily influenced
by a small set of underlying “latent” variables which are
maximally correlated between the datasets. PLS-DA extends
this method toward classification, regressing binary group
variables against a corresponding set of predictor variables
(Perez-Enciso and Tenenhaus, 2003). See Figure 1 for a flowchart
of this process.

It is worth noting that this method does not intend to reveal
the actual spatial distribution of gene expression in the disease
condition, only that a pathology is more or less correlated
spatially with a given gene expression pattern. The rationale for
conducting a correlative analysis between data obtained from
individuals at different age groups is provided by the natural
history of AD: AD pathologies start developing in young-middle
age in brain areas with different transcriptomic signatures, these
pathologies evolve over time in varying degrees for different brain
areas and culminate at distinct patterns of pathology in older
brains. Given that gene expression was assessed in the brains of
individuals who died young or in mid-life, before the typical age
when AD pathologies begin accumulating, the correlations may
reveal genes implicated in the mechanisms conferring regional
resilience or vulnerability to the development of AD.

This study demonstrates a novel data-driven bioinformatic
approach using the spatial correlation between normal gene
expression and image intensity of three types of PET conducted
in AD and Cognitively Normal (CN) individuals as input to a
discriminant analysis. Our specific hypothesis is that the spatial
patterns of emergent pathologies in the AD brain are associated
with the normal spatial expression of specific genes. Our primary
aim was to use this method to derive sets of genes for optimal
classification of AD and CN individuals based on their PET
measures of FDG-18 hypometabolism, Aβ, and Tau deposits. As a
secondary aim, we sought to identify novel genes associated with
distinct aspects of AD pathology and uncover biological processes
that may contribute to their development.
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MATERIALS AND METHODS

Participants
Alzheimer’s Disease and Neuroimaging Initiative
Participants
Baseline FDG-PET, AV45-PET (Aβ), and AV1451-PET (Tau)
images from the ADNI Image & Data Archive site1 were
downloaded as Neuroimaging Informatics Technology Initiative
(NIFTI) file format volumes in January of 2022. We analyzed
each PET tracer for CN and AD ADNI participants ranging from
55 to 95 years old (Table 1). ADNI was launched in 2003 by
the National Institute on Aging (NIA), the National Institute of
Biomedical Imaging and Bioengineering (NIBIB), the Food and
Drug Administration (FDA), private pharmaceutical companies
and non-profit organizations, as a $60 million, 5-year public-
private partnership. The primary goal of ADNI has been to
test whether serial magnetic resonance imaging (MRI), PET,
other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of MCI
and early AD. The Principal Investigator of this initiative is
Michael W. Weiner, MD, VA Medical Center and University
of California San Francisco. For up-to-date information, see
www.adni-info.org.

Allen Human Brain Atlas Human Brain Specimens
The Allen Human Brain Atlas (AHBA) incorporates microarray
data from six postmortem brain specimens obtained from
normal donors with no known prior neuropathological or
neuropsychiatric history (Hawrylycz et al., 2012). Each specimen
provided 501–946 distributed sample sites for the microarray set
of 29,191 unique genes, with multiple probes available for 93%
of these genes. Detailed donor profile information is available
in Supplementary Table 1 and the http://human.brain-map.org/
documentation section.

Allen Human Brain Atlas Microarray Data
Preprocessing
Data for the probes, sample sites, and normalized expression
values was imported from the files available for download
at the Allen Institute for Brain Science, Allen Human
Brain Atlas site: http://human.brain-map.org/static/download.
Detailed information and white papers for the survey, platform
selection, and normalization of the Agilent 8x60K custom

1http://ida.loni.usc.edu

TABLE 1 | Positron emission tomography (PET) pathology image demographics.

PET
modality

Group N Age (yrs ± SD) Age (range) Sex (F:M)

FDG-18 AD 305 75.33 ± 7.41 55–91 123:182

CN 351 75.26 ± 5.93 56–94 177:174

AV-45 AD 174 74.59 ± 8.42 56–90 73:101

CN 421 74.27 ± 7.30 56–95 228:193

AV-1451 AD 65 74.35 ± 8.47 56–89 24:41

CN 435 73.13 ± 7.90 55–94 248:187

microarray data is available at the http://human.brain-map.
org/ documentation section. These consisted of 58,692 probes
(replicates for the 29,191 genes) for each sample. Preprocessing
was performed using R (v.4.1.0) and the Bioconductor package
(Biobase v.2.5.2). The following steps were applied: (1) Removed
AHBA microarray probes with no gene ontology (GO)
annotation or entrez-id, leaving 43,714 probes. (2) Set sample
values with expression values below background as missing
“NA” via the present-absent call (PAC) files provided in the
AHBA data, then removed probes missing more than 50% of
the samples within any specimen, leaving 27,349 probes. (3)
To further reduce missing values, improve signal, and enable
gene set expression analysis, we selected the “best” probe for
each gene using the WGCNA library collapseRows function and
the “MaxMean” method. This selected the row with the highest
mean value within a probe or the highest connectivity among
the rows if three or more probes were available. This aggregation
reduced the number of probes to the final 13,753 individual
genes used in the rest of the analysis, with only 3.4% of the
values missing. (4) Missing value imputation was performed on
the microarray data for each of the six specimens individually
via the missMDA (v. 1.18) package imputePCA function, which
uses a principal components analysis to impute missing values
(Josse and Husson, 2016). The microarray data for each of the
six donors was then concatenated into one profile. Only the 2,754
samples from the cerebral cortex were included in this analysis,
as the cerebellum and brain stem are largely spared by AD and
could drive spurious associations due only to systematic genome-
wide differences in expression levels between these regions (Kang
et al., 2011; Mahfouz et al., 2015).

Alzheimer’s Disease and Neuroimaging
Initiative Positron Emission Tomography
Image Processing
All PET images were fully preprocessed by ADNI, including
smoothing, coregistration, frame averaging, AC-PC orientation,
and intensity normalization. Each individual pre-processed
image was registered to the median image for that modality
via FSL-flirt, which was then registered to the T1 152-subject
MNI (Montreal Neurological Institute) standard template and
manually inspected for accuracy of registration. All images were
then co-registered to the MNI template using that transform. See
Figure 2 for aggregate images in each modality.

Spatial Correlation
The first step in this process was to obtain matching PET intensity
values for the brain locations sampled by the AHBA microarray.
A custom R script using RNifti (version 1.4.0) was used to load in
each PET image and read the intensity values at the coordinates
specified in the AHBA data. An optimized set of ANTs (Avants
et al., 2011) nonlinear-registered MNI coordinates2 was used as
corresponding microarray sample locations for the AHBA and
PET images. This provided tabular output with each row being
an ADNI participant and each column the PET intensity in each

2https://github.com/chrisgorgo/alleninf
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FIGURE 1 | Processing and analysis flow chart.

of the 2,754 cerebral cortex sample locations from the six AHBA
specimens. This was repeated to create a separate data table for
each PET modality.

Next, correlation coefficients as r-values were derived
as pairwise distances via the dist2 function in MATLAB
(Mathworks, Natick, MA, United States), using a Pearson
correlation metric. This correlation was performed between the
single concatenated set of AHBA gene expression values and the
PET pathology intensities for each ADNI participant in the same
AHBA sample locations. This correlation was repeated within
each PET modality, resulting in a new data table with each row
being an ADNI participant and each column being the respective
r-values for each gene. These r-values were then converted to
z-scores using the Fisher r-to-z transform and entered into the
following PLS-DA model.

(Sparse)PLS-DA
Starting with a table of z-values reflecting the spatial correlation
between gene expression and PET pathology in the cerebral
cortex microarray samples, we used the sparse PLS-DA (sPLS-
DA) from the mixomics (Rohart et al., 2017) R package (v.6.16.3)
to perform a discriminant analysis between Alzheimer’s disease
(AD) and cognitively normal (CN) ADNI participants. Sparse
PLS-DA classified the samples based on the best predictive or
discriminative features in a one-step procedure (Le Cao et al.,
2011). The table of z-scores was used as the input dataset and
the AD or CN diagnosis as the classifier. The model was tuned
using the tune.splsda function with leave-one-out (loo) validation
and 50 repeats. The tuning function consistently revealed that the

optimal number of components was two for each PET pathology.
The optimal number of classification variables for components 1
and 2, respectively were 6 & 10 for FDG, 30 & 20 for AV45, and
35 & 5 for AV1451.

Gene Set Enrichment Analysis
Enrichr (Chen et al., 2013; Kuleshov et al., 2016; Xie et al.,
2021) was used to query the gene sets derived from the PLS-
DA analysis above, using the enrichR version 3.0 package in
R. The gene sets derived from the first principal component
of the PLS-DA step were used as inputs for the enrichment
analysis individually and assessed with BioPlanet 2019 (Huang
et al., 2019), which integrates pathways from curated sources
including the Kyoto Encyclopedia of Genes and Genomes
(KEGG), NCI-Nature, BioCarta, Science Signaling, Reactome,
NetPath, and WikiPathways.

RESULTS

Sparse PLS-DA Gene Selection
Sparse PLS-DA was used to identify the optimal set of
genes whose expression-intensity correlation value discriminated
between CN and AD participants. Separate models were created
for FDG-18, AV-45, and AV-1451 PET, as described above. The
first component of the PLS-DA analysis for FDG-18 explained
21.2% of the variance, AV-45 71.6%, AV-1451 41.4%. The first
component was retained for further analyses, as the variance
explained by the second components for FDG-18, Aβ, and Tau
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FIGURE 2 | Pet Pathology Z-maps. Multi-planar Axial, Coronal, and Sagittal
views of the median of the MNI-registered ADNI AD and CN participant
images. Top row is FDG-18 maps of hypometabolism, middle is AV-45 Aβ

distribution, bottom is AV-1451 Tau distribution. FDG-18 images were
normalized to the median of a manually drawn pons ROI. AV-45 and AV1451
were normalized to whole cerebellum. Thresholding for the figures is
consistent between AD and CN groups for visual comparison. Non-brain
areas are masked and the “NIH” look-up-table was used for color scale.
Figure created in MRIcroGL v1.2.

distribution was marginal: 2.3, 2.6, and 2.6%, respectively. Sample
plots for each PET pathology showing the distribution of the data
in latent space are in Figure 3A.

Receiver Operator Characteristic (ROC) Area Under the
Curve (AUC) plots were used to further evaluate the classification
results. Results were similar between each pathology. For
discrimination between AD and CN on the first component,
the FDG-18-associated set had an AUC of 0.88, the AV-45-
associated set an AUC of 0.87, and the AV-1451-associated set
an AUC of 0.89. AUC curves presented in Figure 3B are for
comparison only, as they are generated using specificity and
sensitivity cutoff maximization rather than PLS-DA distance
metrics (Rohart et al., 2017).

Genes selected by the sPLS-DA model are shown in the
loading plots, which show the direction each expression-
intensity correlation classifies toward (Figure 4). For genes
that classified toward AD, their underlying average expression-
intensity correlation was higher in the AD group. Likewise,
genes that classified toward CN had higher expression-intensity
correlations in the CN group. This signifies that the spatial

pattern of the PET image intensity diverged far enough in either
direction from the spatial pattern of normal gene expression that
it would aid in classification. See Supplementary Tables 2,3 for
annotations and loading statistics output for these genes.

Gene Set Enrichment Analysis
Enrichr was used to examine the biological relevance of groups
of genes within the selected gene sets according to the BioPlanet
2019 pathway set. Plots of the top 15 significant (p < 0.05)
pathways for each pathology by p-value and gene count are
shown in Figure 5. The overlap with many Bioplanet pathway
gene sets is unavoidably low due to the optimal small size (6–35
genes) of the sPLS-DA derived classifier sets, so this analysis is
an exploratory measure to infer function. Correcting for multiple
comparisons by the Benjamini-Hochberg (BH) procedure, the
adjusted p-values for FDG-18 retained all pathways, those
of AV-1451 exceeded a p of.05 after the 8th listed pathway
(Metabolism), and AV-45 retained no significant pathways. See
Supplementary Table 4 for a full list of pathway outputs,
associated genes, and statistics.

DISCUSSION

Using an unbiased approach, we derived sets of genes
with expression patterns spatially associated with FDG
hypometabolism, Aβ deposition, and Tau deposition in
AD. Pathway analysis of these gene sets via BioPlanet revealed
links to mitochondrial function, Notch signaling, and other
neuropathologically interesting pathways that may underlie the
canonically distinct spatial patterns of FDG hypometabolism, Aβ

and Tau deposition in AD.
From a broad perspective, the regional patterns of different

AD pathologies implicated different sets of genes, with the
exception of NDUSF4, which was implicated in regional
vulnerability to both Tau and FDG hypometabolism. All sets
classified between AD and CN with similar accuracy, with Aβ

marginally on the low end and Tau on the highest. FDG reached
optimal classification using only six genes, compared to 30 for Aβ

and 35 for Tau. All revealed significant and meaningful pathway
results, but only FDG and Tau survived correction for multiple
comparisons. FDG and Tau also showed higher numbers of
genes classifying toward CN in the discriminant analysis, which
may imply regional protective effects of these genes against the
development of FDG hypometabolism and Tau deposition. Such
protective effects are less pronounced for Aβ, which has genes
classifying toward either group. Tau and FDG are also the only
gene sets that map to a pathway indicative of AD itself, which
does not emerge for the Aβ-associated gene set. It is worth noting
that these results reflect the current focus of AD research, which
is shifting away from the amyloid hypothesis (Morris et al., 2014)
and toward Tau (Josse and Husson, 2016) and brain metabolism
(Neth and Craft, 2017) as primary pathogenic events of interest.

The nominal “Alzheimer’s disease” pathway is the foremost
one identified by BioPlanet for the discriminant gene set
for FDG-18, implicated via the influence of BACE2 and
NDUFS4. BACE2 is the focus of considerable interest in
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FIGURE 3 | Sparse PLS-DA plots for gene selection. (A) Sample plots from sPLS-DA performed on the gene expression – PET intensity correlation data including
95% confidence ellipses. The samples are projected into the space spanned by the first two components and colored by group: blue for AD and orange for CN.
(B) Receiver Operator Characteristic (ROC) curve and AUC on the expression-intensity correlation data for component 1.

FIGURE 4 | Loading plots for the optimal classifying genes in the sPLS-DA analysis. Highest loading genes or pathologies are on the bottom (descending order),
leftward (blue) deflected bars classify to AD, rightward (orange) to CN.
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FIGURE 5 | Enrichr results as barplots for FDG-18, AV-45, and AV-1451 PET gene sets. These figures are limited to the top 15 significant pathways (p < 0.05), the
complete set is in Supplementary Table 3. The x-axis categories are the BioPlanet pathways arranged by p-value from lowest (top) to highest (bottom). The y-axis
is the gene count, or number of genes found in that pathway.

AD as a conditional β-secretase that normally suppresses the
amyloidogenic processing of APP (Huentelman et al., 2019;
Wang et al., 2019). NDUFS4 codes for a mitochondrial subunit
known to bind oligomeric Aβ (Olah et al., 2011) and may have
a role in the cognitive deficits of AD via oxidative stress (Harris
et al., 2007). The full BioPlanet pathway list in Supplementary
Table 4 also revealed numerous several entries for NOTCH
signaling via the influence of HDAC4, a histone deacetylase with
an important role in nerve function by promoting neuronal
apoptosis (Bolger and Yao, 2005) and of interest as a therapeutic
target for AD due to its deregulation and accumulation in the

AD brain (Xu et al., 2011; Shen et al., 2016; Wu et al., 2016).
Recent evidence has suggested that aberrant Notch signaling
could result in the neurodegeneration seen in AD (Woo et al.,
2009; Kapoor and Nation, 2021). In addition, the failure of
γ-secretase inhibitors as treatments of AD has been partly
attributed to its deleterious effects on Notch signaling, which may
have counteracted any benefits from reduced Aβ production (Luo
and Li, 2022). MGAT5 was implicated as part of Golgi metabolic
pathways and has attracted recent interest due to its human-
specific differential expression in brain tissue layers as well as
in AD (Jorge et al., 2021). PIGK, and DIP2A were also high
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classifier loadings in the PLS-DA. Potentially a novel candidate
gene, PIGK has little current implication in AD literature but
is linked to the maturation or modification of APP (Del Prete
et al., 2017). Similarly, the function of DIP2A is still unclear, but
it was the strongest loading gene in our FDG-18-related analysis
and has been associated with amyloid burden in epigenome-
wide association (EWAS) studies of AD using post-mortem brain
tissue (De Jager et al., 2014; Li et al., 2020).

Of the three AD pathologies probed by PET imaging, Tau
deposition (by AV-1451) appears to reveal the most relevant
pathways related to AD, as well as including “Alzheimer’s
disease” itself as the most highly significant BioPlanet-identified
pathway via NDUFS4 & 8, NDUFA6 & 7 and UQCRQ. This
“Alzheimer’s disease” pathway overlaps with other AV-1451-
associated pathways that relate to mitochondrial respiration,
electron transport, and oxidative phosphorylation (NDUFS4 &
8, NDUFA6 &7, UQCRQ, & COX17), as well as metabolism
(NDUFS4 & 8, NDUFA6 &7, UQCRQ, COX17, & ETHE1). The
mitochondrial subunit NDUSF4 was also found in the FDG-
18 gene set as above, through which it shares common features
in terms of electron transport, oxidative phosphorylation, and
metabolism. Disruptions in these pathways may contribute
to both AD metabolic abnormalities and Tau pathology by
impairment of mitochondrial function (Yao et al., 2009;
Chakravorty et al., 2019; Lim et al., 2020).

In this setting, it is important to note that FDG
hypometabolism has long been considered more closely
spatially, temporally and causally linked to Tau deposition than
Aβ deposition (Ossenkoppele et al., 2016). A common genetic
underpinning of mitochondrial and metabolic abnormalities
could help account for this relationship. Recently, we identified
decreased levels and activity of mitochondrial electron transport
chain components in plasma neuronal-derived Extracellular
Vesicles of individuals with AD compared to Controls (Yao et al.,
2021), as well as in individuals with major depressive disorder
(Goetzl et al., 2021) or neuropsychiatric symptoms due to long
COVID-19 compared to controls (Peluso et al., 2022). These
studies indicate that mitochondrial dysfunction in AD can be
studied in living individuals through biomarkers, opening the
way to establishing it as a core feature of AD progression.

Many individual genes within the AV-1451 set have been
implicated in AD pathogenesis in the past, supporting the
validity of our approach. The strongest loading individual gene
on the AV-1451 list was the cyclin-dependent kinase CDK7,
which is elevated early in AD pathogenesis and may upregulate
Amyloid(β) Precursor Protein (APP) and Tau (Zhu et al.,
2000; Lukasik et al., 2021). EMC3 is involved in endoplasmic
reticulum associated degradation, which has been implicated
in neurodegeneration in a mouse AD model (Zhu et al.,
2017). AKR1A1 codes for an aldehyde reductase, which is
protective against neurodegeneration in AD (Picklo et al., 2001).
Differentially methylated positions on B3GALT4 are linked to late
onset AD and have been associated with memory performance
and CSF levels of Aβ and tau (Madrid et al., 2018). CPSF3
is involved in the RNA life cycle and has been identified as
part of the molecular interaction network for AD (Rosenthal
et al., 2022). COX17 codes for a cytochrome C oxidase copper

chaperone involved in copper homeostastis, which has been
tentatively linked to AD (Ejaz et al., 2020). PTMPT1 is part of an
AD-risk locus identified via genome-wide analyses (Efthymiou
and Goate, 2017). However, STN1, AFG1L, PLEKHB2, DHX36,
WDR73, SDR39U1, MRS2, NSCME2, COMMD8, CCT6A,
NBPF4, SCNK2B, MFSD11, SNF684, and C16orf72, are relatively
unstudied in the context of neurodegenerative diseases and AD,
raising the possibility of having identified novel mechanisms.

Amyloid-β deposition via AV-45 PET revealed the fewest
interpretable pathways and did not reveal a significant pathway
for “Alzheimer’s disease” (p = 0.22). Of the pathways identified,
there were some related to the cell cycle via CDKN1C and ORC3.
Concerning this, there are existing hypotheses that disruptions to
cell cycling may be a cause for the neuronal death observed in
AD (Raina et al., 1999, 2004) but little in the way of experimental
research to test it or the possible role of CDKN1C and ORC3.
In terms of individual genes, there were many hints about their
involvement in AD pathophysiology. TXNDC17 interacts with
the cellular prion protein (PrPc)(Ulbrich et al., 2018), which is
the main receptor for oligomeric Aβ. GPPS1 is elevated in the
AD frontal cortex and may modify Aβ production (Hooff et al.,
2010). PDCD6IP (as ALIX) is decreased in the serum of AD
patients and AβPP/PS1 mice (Sun et al., 2015) and directs the
trafficking of APP into extracellular vesicles (Cone et al., 2020).
RCOR3 is down-regulated in the hippocampus of AD brain
specimens (Yan et al., 2019). The tripartite motif protein TRIM2
has high hippocampal expression that may be impacted by the
presence of Aβ plaques via modulatory miRNA (Schonrock et al.,
2012). LRRC8D may interact with Aβ as a binding protein
(Virok et al., 2011). DUSP22 inhibits protein-kinase A activity
and hence Tau phosphorylation and CREB signaling (Sanchez-
Mut et al., 2014). SLF1, UPS11, CEP20, TMEM107, SAMHD1,
RIMS2, WASHC5, SLC22A7, UBXN11, CCDC87, DDX19A,
FOXB1, GREM1, ANGEL1, INTS5, TRIM2, HBS1NL, NPAS2,
UQCR10, HPS3, GTPBP10, and NSD1 are relatively unstudied
in this context.

While the spatial correlation was meant to identify genes
implicated in the regional vulnerability to AD and not necessarily
to improve AD group classification, we also performed a post-
hoc comparison using only the mean PET intensity for each of
the three modalities as the dependent variable, entering each into
otherwise identical sPLS-DA models. This resulted in notably
lower AUCs: 0.63 for FDG, 0.63 for AV-45, and 0.71 for AV-
1451.

A limitation of this study is the fact that while the AHBA
contains numerous samples, they are derived from only six brain
specimens and from a younger cohort than the ADNI group. The
method of spatial correlation we implemented in this study is
currently unable to apply covariates for factors such as age and
sex, since the spatial correlation involves data derived from two
separate sets of subjects. Fortunately, the ADNI participants are
consistent in terms of age and sex, and the AHBA specimens have
undergone substantial normalization for array and batch-specific
biases. Both sex and age interact with gene expression in the
brain, particularly in terms of immune activation and metabolism
(Berchtold et al., 2008). Until there are comprehensive richly
sampled post-mortem studies of regional gene expression with
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a variety of ages, sexes, and disease statuses, it will be difficult to
predict or account for the effects of these potential confounds.

Regarding AD-related genes revealed by genome and
epigenome – wide association studies that essentially create
binary contrasts of diseased/non-diseased individuals in large
populations, we should note that a gene product may still
be important in AD without being spatially correlated with
a pathology, and vice-versa. The methodology employed in
the present study may complement these population-based
approaches for identifying the genetic underpinnings of AD. We
hope that data-driven methods like ours can identifying novel
genes implicated in vulnerability to AD for further evaluation.

CONCLUSION

We present a novel method to extract information from the
melding of microarray and imaging data to identify genes
involved in AD pathology and its regional distribution. This
method allowed us to identify both known and novel candidate
genes and highlights certain pathways for further investigation,
but also as potential therapeutic targets. This methodology
is flexible, produces an interpretable list of only the best-
classifying genes, and can be extended to provide insight into
the genetic underpinnings of other brain diseases with their own
characteristic spatial patterns of pathology.
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